A meleg, a hideg és a tapintás érzékelésének képessége létfontosságú a túléléshez. "A mindennapi életünkben biztosra vesszük ezek érzékelését, de hogyan keletkeznek az idegi impulzusok a hőmérséklet és a nyomás észleléséhez? Ezt a kérdést válaszolták meg az idei Nobel-díjasok" - írták az illetékes bizottság indoklásában.
David Julius molekuláris neurobiológus a chili paprika csípős, égető érzést keltő alkotóelemét használta egy olyan szenzor azonosításához a bőr idegvégződéseiben, amely hőhatásra reagál. Ardem Patapoutian molekuláris biológus, idegtudós pedig nyomásra érzékeny sejteket használt szenzorok egy olyan új osztályának felfedezésében, amelyek mechanikai stimulációra válaszolnak a bőrben és a belső szervekben. Ezen átütő felfedezések beható kutatásokat indítottak el, amelyek révén gyorsan bővültek arról szóló ismereteink, hogy az idegrendszer miként érzékeli a hőt, a hideget és a mechanikai ingereket - írták. "A kitüntetettek fontos hiányzó láncszemeket azonosítottak az érzékeink és a környezet közötti komplex kölcsönhatás megértésében" - tették hozzá.
Learn more about the 2021 #NobelPrize in Physiology or Medicine
— The Nobel Prize (@NobelPrize) October 4, 2021
Press release: https://t.co/bLE8ykcgQ2
Advanced information: https://t.co/IrQHdsvNff pic.twitter.com/IOaXGPytb8
The seminal discoveries by this year’s #NobelPrize laureates in physiology or medicine have explained how heat, cold and touch can initiate signals in our nervous system. The identified ion channels are important for many physiological processes and disease conditions. pic.twitter.com/TxMTwSDHas
— The Nobel Prize (@NobelPrize) October 4, 2021
David Julius és Ardem Patapoutian felfedezései előtt még megválaszolásra várt az az alapvető fontosságú kérdés, hogy miként válik elektromos impulzussá az idegrendszerben a hőmérséklet és a tapintás.
David Julius úgy vélte: előrelépést érhetnek el a kérdésben annak vizsgálatával, hogy a chili paprikában található kapszaicin miként kelt égető érzést a szervezetben. Az 1990-es évek második felében a Kaliforniai Egyetem San Franciscó-i intézményében David Julius és kollégái "könyvtárat" hoztak létre a fájdalomra, a hőre és a tapintásra reagáló neuronokban kifejeződő génekkel egyező DNS-töredékek millióiból. Feltételezték, hogy a "könyvtár" tartalmaz olyan DNS-töredéket is, amely a kapszaicinra reagálni képes fehérjét kódolja. Hosszas kutatás után egyetlen gént találtak, amely érzékennyé tette a sejteket a kapsziacinra, további kísérletek pedig felfedték, hogy ez a gén új ioncsatorna-fehérjét kódol. Az újonnan felfedezett kapsziacinreceptor a TRPV1 nevet kapta. A fehérje hőre való reagálásának képességét vizsgálva Julius rájött, hogy hőérzékelő receptort fedezett fel, amely a fájdalmasnak érzékelt hőmérsékletekre aktiválódik.
A TRPV1 felfedezése áttörést jelentett a hőmérséklet érzékeléséért felelős további receptorok azonosításában. Egymástól függetlenül David Julius és Ardem Patapoutian mentolt használva azonosította a hideg által aktivált TRPM8 receptort, majd a TRPV1-hez és a TRPM8-hoz kapcsolódó további ioncsatornákat, amelyek különböző hőmérsékletekre reagálnak.
Az viszont továbbra is tisztázásra várt, hogy az emberi szervezet miként érzékeli a tapintást és a nyomást. Ardem Patapoutian a kaliforniai Scripps Kutatóintézetben kollégáival először olyan sejteket azonosított, amelyek mérhető elektromos jelet adtak le, amikor az egyes sejteket mikropipettával "megbökték". Úgy vélték, hogy a mechanikai erő által aktivált receptor egy ioncsatorna, és következő lépésként azonosítottak 72 gént, amelyekről úgy gondolták, kódolhatja a keresett receptorokat. Végül találtak egy ilyen gént. Az új és teljesen ismeretlen mechanoszenzitív ioncsatorna a Piezo1 nevet kapta. Majd találtak egy második gént is, a Piezo2-t. Később kiderült, hogy a Piezo1 és a Piezo2 további fontos fiziológiai folyamatokat is szabályoz, többek közt a vérnyomást, a vizelési ingert és a lélegzést.